
Introduction to
object oriented PHP

Marcus Börger

eZ publish Conference

Marcus Börger Introduction to object oriented PHP 2

Overview

What is OOP?

PHP and OOP

Marcus Börger Introduction to object oriented PHP 3

What is OOP

class Useless extends Nonsense
{

abstract function blaBla();
}

?

Marcus Börger Introduction to object oriented PHP 4

What does OOP aim to
achieve?

Allow compartmentalized refactoring of code
Promote code re-use
Promote extensibility, flexibility and adaptability
Better for team development
Many patterns are designed for OOP
Some patterns lead to much more efficient code

Do you need to use OOP to achieve these goals?
Of course not
It’s designed to make those things easier though

Marcus Börger Introduction to object oriented PHP 5

What are the features of
OOP?

Encapsulation

Inheritance

Polymorphism

Marcus Börger Introduction to object oriented PHP 6

Encapsulation

Encapsulation is about grouping of functionality
(operations) and related data (attributes) together
into a coherent data structure (classes).

Marcus Börger Introduction to object oriented PHP 7

Encapsulation

Encapsulation is about grouping of functionality
(operations) and related data (attributes) together
into a coherent data structure (classes).
Classes represent complex data types and the
operations that act on them. An object is a
particular instance of a class.

Marcus Börger Introduction to object oriented PHP 8

Encapsulation

Encapsulation is about grouping of functionality
(operations) and related data (attributes) together
into a coherent data structure (classes).
Classes represent complex data types and the
operations that act on them. An object is a
particular instance of a class.
The basic idea is to re-code real life.

For instance if you press a key on your laptop keyboard
you do not know what is happening in detail. For you it is
the same as if you press the keyboard of an ATM. We say
the interface is the same. If another person has the same
laptop the internal details would be exactly the same.

Marcus Börger Introduction to object oriented PHP 9

Encapsulation

Encapsulation is about grouping of functionality
(operations) and related data (attributes) together
into a coherent data structure (classes).
Classes represent complex data types and the
operations that act on them. An object is a
particular instance of a class.
The basic idea is to re-code real life.

For instance if you publish a text that is not really different
from publishing a picture. Both are content types and you
might want to encapsulate the details on how to do the
actual publishing in a class. And once you have that you
can easily have contend that consists of both pictures and
text and yet use the same operations for publishing.

Marcus Börger Introduction to object oriented PHP 10

Encapsulation: Are Objects
Just Dictionaries?

In PHP 4 objects were little more than arrays.

In PHP 5 you get much more control by visibility,
interfaces, type hints, interceptors and more.

Another difference is coherency. Classes can be
told to automatically execute specific code on
object creation and destruction.

class Simple {
function __construct() { /*...*/ }
function __destruct() { /*...*/ }

}

Marcus Börger Introduction to object oriented PHP 11

Data Hiding

Another difference between objects and arrays is
that objects permit strict visibility semantics. Data
hiding eases refactoring by controlling what other
parties can access in your code.

public anyone can access it
protected only descendants can access it
private only you can access it
final no one can re-declare it
abstract someone else will implement this

Why have these in PHP?

Because sometimes self-discipline isn’t enough.

Marcus Börger Introduction to object oriented PHP 12

Inheritance

Inheritance allows a class to specialize (or extend)
another class and inherit all its methods,
properties and behaviors.

This promotes
Extensibility
Reusability
Code Consolidation
Abstraction
Responsibility

Marcus Börger Introduction to object oriented PHP 13

The Problem of Code
Duplication

Code duplication contradicts maintainability.
You often end up with code that looks like this:

function foo_to_xml($foo) {
// generic stuff
// foo-specific stuff

}

function bar_to_xml($bar) {
// generic stuff
// bar specific stuff

}

Marcus Börger Introduction to object oriented PHP 14

The Problem of Code
Duplication

You could clean that up as follows
function base_to_xml($data) { /*...*/ }

function foo_to_xml($foo) {

base_to_xml($foo);
// foo specific stuff

}

function bar_to_xml($bar) {
base_to_xml($bar);
// bar specific stuff

}

But it’s hard to keep base_to_xml() working for
the disparate foo and bar types.

Marcus Börger Introduction to object oriented PHP 15

The Problem of Code
Duplication

In an OOP style you would create classes for the
Foo and Bar classes that extend from a base class
that handles common functionality.
Sharing a base class promotes sameness.

class Bar extends Base {
public function toXML()
{

parent::toXML();
// bar specific stuff

}
}

class Base {
public function toXML()
{

/*...*/
}

}
class Foo extends Base {

public function toXML()
{

parent::toXML();
// foo specific stuff

}
}

Marcus Börger Introduction to object oriented PHP 16

Polymorphism?

Suppose a calendar that is a collection of entries.
Procedurally dislpaying all the entries might look like:

foreach($entries as $entry) {
switch($entry[’type’]) {
case 'professional':

display_professional_entry($entry);
break;

case 'personal':
display_personal_entry($entry);
break;

}
}

Marcus Börger Introduction to object oriented PHP 17

Simplicity through
Polymorphism

In an OOP paradigm this would look like:

foreach($entries as $entry) {
$entry->display();

}

The key point is we don't have to modify this loop
to add new types. When we add a new type, that
type gets a display() method so that it knows how
to display itself, and we’re done.

Also this is much faster because we do not have to
check the type for every element.

Marcus Börger Introduction to object oriented PHP 18

Simplicity through Magic?

Actually in PHP you might want this:

foreach($entries as $entry) {
echo $entry;

}

A class can have a __tostring() method which
defines how its objects are converted into a
textual representation.

PHP 5.2 supports this in all string contexts.

Marcus Börger Introduction to object oriented PHP 19

Another example
class Humans {

public function __construct($name) {
/*...*/

}
public function eat() { /*...*/ }
public function sleep() { /*...*/ }
public function snore() { /*...*/ }
public function wakeup() { /*...*/ }

}

Marcus Börger Introduction to object oriented PHP 20

Some Inheritance
class Humans {

public function __construct($name) { /*...*/ }
public function eat() { /*...*/ }
public function sleep() { /*...*/ }
public function snore() { /*...*/ }
public function wakeup() { /*...*/ }

}
class Women extends Humans {

public function giveBirth() { /*...*/ }
}

Marcus Börger Introduction to object oriented PHP 21

Inheritance+Polymorphism
class Humans {

public function __construct($name) { /*...*/ }
public function eat() { /*...*/ }
public function sleep() { /*...*/ }
public function wakeup() { /*...*/ }

}
class Women extends Humans {

public function giveBirth() { /*...*/ }
}
class Men extends Humans {

public function snore() { /*...*/ }
}

Marcus Börger Introduction to object oriented PHP 22

A little abstraction
abstract class Humans {

public function __construct($name) { /*...*/ }
abstract public function gender();
public function eat() { /*...*/ }
public function sleep() { /*...*/ }
public function wakeup() { /*...*/ }

}
class Women extends Humans {

public function gender() { return 'female'; }
public function giveBirth() { /*...*/ }

}
class Men extends Humans {

public function gender() { return 'male'; }
public function snore() { /*...*/ }

}

Marcus Börger Introduction to object oriented PHP 23

Overloading or Polymorphism
the other way round

Unlike other languages PHP does not and will not
offer overloading polymorphism for method
calling. Thus the following will never work in PHP
<?php
class Test {

function toXML(Personal $obj) //…
function toXML(Professional $obj) //…

}
?>
To work around this

Use the other way round (call other methods from a
single toXML() function in a polymorphic way)
Use switch/case (though this is not the OO way)

Marcus Börger Introduction to object oriented PHP 24

Constructor visibility

A protected constructor prevents instantiation

class Base {
protected function __construct() {
}

}

class Derived extends Base {
// constructor is still protected
static function getBase() {

return new Base; // Factory pattern
}

}

class Three extends Derived {
public function __construct() {
}

}

Marcus Börger Introduction to object oriented PHP 25

The Singleton pattern

Sometimes you want only a single instance of
aclass to ever exist.

DB connections
An object representing the user or connection.

class Singleton {
static private $instance;
protected function __construct() {}
final private function __clone() {}
static function getInstance() {

if(!self::$instance)
self::$instance = new Singleton();

return self::$instance;
}

}
$a = Singleton::getInstance();
$a->id = 1;
$b = Singleton::getInstance();
print $b->id."\n";

Marcus Börger Introduction to object oriented PHP 26

Often different objects have the some equal
functionality without sharing the same base class

class Line {
function draw() {};

}
class Polygon {

protected $lines;
function draw() {

foreach($this->lines as $line)
$line->draw();

}
}
class Rectangle extends Polygon {

function draw() {};
}
class Ellipse {

function draw() {};
}
class Circle extends Ellipse {

function draw() {
parent::draw();

}
}

Different Object
same behavior

Polygon

Line Ellipse

Circle
$lines

Rectangle

Marcus Börger Introduction to object oriented PHP 27

Interfaces

Interfaces describe an abstract class protocol
Classes may inherit multiple Interfaces
interface Drawable {

function draw();
}
class Line implements Drawable {

function draw() {};
}
class Polygon implements Drawable {

protected $lines;
function draw() {

foreach($this->lines as $line)
$line->draw();

}
}
class Rectangle extends Polygon {

function draw() {};
}
class Ellipse implements Drawable {

function draw() {};
}
class Circle extends Ellipse {

function draw() {
parent::draw();

}
}

Drawable

Polygon

Line Ellipse

Circle
$lines

Rectangle

Marcus Börger Introduction to object oriented PHP 28

Object to String conversion

__toString(): semi-automatic object to string
conversion with echo and print
(automatic starting with 5.2)

class Object {
function __toString() {

return 'Object as string';
}

}

$o = new Object;

echo $o;

$str = (string) $o; // does NOT call __toString

Marcus Börger Introduction to object oriented PHP 29

Typehinting

PHP 5 allows to easily force a type of a parameter
PHP does not allow NULL for typehints
Typehints must be inherited as given in base class
PHP 5.1 offers typehinting with arrays
PHP 5.2 offers optional typhinted parameters (= NULL)

class Object {
public function compare(Object $other) {

// Some code here
}
public function compare2($other) {

if (is_null($other) || $other instanceof Object) {
// Some code here

}
}

}

Marcus Börger Introduction to object oriented PHP 30

Class Design

It is important to think about your class hierarchy

Avoid very deep or broad inheritance graphs

PHP only supports is-a and has-a relations

Vehicle

TruckCar Bus Diesel Gasoline

Engine
Bicycle

Tires

TurbineTank Plane

Marcus Börger Introduction to object oriented PHP 31

Reference

Everythining about PHP
http://php.net

These slides
http://talks.somabo.de

SPL Documentaion & Examples
http://php.net/~helly/php/ext/spl
http://cvs.php.net/php-src/ext/spl/examples
http://cvs.php.net/php-src/ext/spl/internal

George Schlossnagle
Advanced PHP Programming

Andi Gutmans, Stig Bakken, Derick Rethans
PHP 5 Power Programming

http://php.net/
http://php.net/
http://talks.somabo.de/
http://talks.somabo.de/
http://php.net/~helly/php/ext/spl
http://cvs.php.net/php-src/ext/spl/examples
http://cvs.php.net/php-src/ext/spl/internal
http://www.amazon.com/exec/obidos/tg/detail/-/0672325616
http://www.amazon.de/exec/obidos/ASIN/013147149X
http://www.amazon.de/exec/obidos/ASIN/013147149X

	Introduction to object oriented PHP
	Overview
	
	What does OOP aim to achieve?
	What are the features of OOP?
	Encapsulation
	Encapsulation
	Encapsulation
	Encapsulation
	Encapsulation: Are Objects Just Dictionaries?
	Data Hiding
	Inheritance
	The Problem of Code Duplication
	The Problem of Code Duplication
	The Problem of Code Duplication
	Polymorphism?
	Simplicity through Polymorphism
	Simplicity through Magic?
	Another example
	Some Inheritance
	Inheritance+Polymorphism
	A little abstraction
	Overloading or Polymorphism the other way round
	Constructor visibility
	The Singleton pattern
	Different Object same behavior
	Interfaces
	Object to String conversion
	Typehinting
	Class Design
	Reference

